B. A. FRENZ & ASSOCIATES INC. (1983). SDP-Plus. College Station, Texas 77840, USA, and Enraf-Nonius, Delft, The Netherlands.

- CAIRA, M. R., DE WET, J. F., DU PREEZ, J. G. H. & GELLATLY, B. J. (1978). Acta Cryst. B34, 1116-1120.
- EGGLESTON, D. S., CHODOSH, D. F., HILL, D. T. & GIRARD, G. R. (1984). Acta Cryst. C40, 1357–1359.
- FLEMING, R. J., SHAIKH, M. A., SKELTON, B. W. & WHITE, A. H. (1979). Aust. J. Chem. 32, 2187–2193.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- KHARASCH, M. S. & ISBELL, H. S. (1931). J. Am. Chem. Soc. 53, 3059–3065.
- MALIK, N. A., SADLER, P. J., NEIDLE, S. & TAYLOR, G. L. (1978). J. Chem. Soc. Chem. Commun. pp. 711-712.
- POPE, W. J. (1929). British Patent No. 338506.
- POPE, W. J. (1931). US Patent No. 1819384.
- PRICE, S. J. B., DIMARTINO, M. J., HILL, D. T., KURODA, R., MAZID, M. A. & SADLER, P. J. (1985). *Inorg. Chem.* 24, 3425–3434.
- TYABJI, A. M. & GIBSON, C. S. (1952). J. Chem. Soc. pp. 450-452.

Acta Cryst. (1988). C44, 56–58

Structure of *mer*-(Acetonitrile)trichloro[1-methyl-3-(2-pyridyl)-1,2,4-triazole]ruthenium(III)

BY R. HAGE, R. PRINS, R. A. G. DE GRAAFF, J. G. HAASNOOT* AND J. REEDLIK

Department of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands

AND J. G. VOS

School of Chemical Sciences, National Institute for Higher Education, Dublin 9, Ireland

(Received 21 July 1987; accepted 9 September 1987)

Abstract. [RuCl₃(C₂H₃N)(C₈H₈N₄)], $M_r = 408.63$, monoclinic, $P2_1/c$, a = 11.929 (1), b = 7.472 (1), c = 16.486 (3) Å, $\beta = 95.11$ (2)°, V = 1463.7 Å³, Z = 4, $D_x = 1.85$ (1), $D_m = 1.81$ Mg m⁻³, λ (Mo K α) = 0.7145 Å, $\mu = 1.586$ mm⁻¹, F(000) = 804, T = 298 K, R = 0.018 for 1337 unique reflections [$I > 2\sigma(I)$]. The planar pyridyltriazole ligand is coordinated to the central metal atom via N(1') and N(4). No water molecules leading to hydrogen bonding have been detected. The Ru–Cl distances of 2.33-2.34 Å are in the range expected for ruthenium(III) compounds.

Introduction. Ruthenium(II) compounds with 2,2'bipyridine-like ligands have been studied in great detail because of their possible application in the photochemical decomposition of water (Seddon, 1982; Kalyanasandaram, 1982). However, less attention has been paid to ruthenium(III) compounds; no crystal structures have been reported for ruthenium(III) compounds with asymmetric chelating N-donor ligands. Recently it was predicted, on the basis of ¹H NMR 1-methyl-3-(2-pyridyl)-1,2,4-triazole that data. (1Mepyrtr) would coordinate via N(1') and N(4) to ruthenium(II) (Hage, Haasnoot, Reedijk & Vos, 1986). The ligand has two coordination modes [N(1')] and N(2) or N(1') and N(4); see Fig. 1]. Until now no

crystal structures of compounds containing this ligand have been reported. The crystal structure of a ruthenium(III) compound containing both 1Mepyrtr and acetonitrile is described in this paper.

Experimental. Bright red crystals of the title compound were obtained after heating RuCl₃ and 1Mepyrtr in acetonitrile. A hexagonal single crystal of dimensions $0.12 \times 0.09 \times 0.06$ mm was selected for crystalstructure determination. D_m was determined by flotation. Intensity data were collected at room temperature by using an Enraf-Nonius CAD-4 diffractometer. Graphite-monochromated Mo K α radiation (λ = 0.71745 Å) was used. Cell parameters were obtained by least-squares methods for 24 reflections; the

Fig. 1. Atomic numbering and coordination modes of 1-methyl-3-(2-pyridyl)-1,2,4-triazole.

© 1988 International Union of Crystallography

^{*} To whom all correspondence should be addressed.

^{0108-2701/88/010056-03\$03.00}

Table 1. Fractional atomic coordinates (×10⁵ for Ru; ×10⁴ for C, N and Cl; ×10³ for H) and isotropic thermal parameters {×10³ for Ru; ×10² for C [except C(51)], N and Cl; ×10 for C(51) and H}

	x	ν	7	$B_{-}(Å^2)$
Ru(1)	21048 (3)	42577 (4)	10881 (2)	2310 (9)
C(5)	1781 (3)	4596 (5)	-853(2)	289 (11)
N(4)	2291 (2)	4798 (4)	-113(2)	245 (8)
	3169 (3)	5905 (5)	-230(2)	254 (9)
N(2)	3228 (2)	6378 (4)	-987(2)	299 (9)
N(I)	2321(3)	5519 (4)	-1375(2)	302 (8)
C(51)	2027 (6)	5765 (9)	-2248(3)	46 (2)
C(32)	3898 (3)	6447 (5)	482 (2)	251 (9)
C(33)	4833 (3)	7486 (5)	457 (3)	352 (12)
C(34)	5469 (3)	7881 (6)	1175 (3)	415 (13)
C(35)	5137 (3)	7225 (6)	1885 (3)	394 (13)
C(36)	4184 (3)	6208 (5)	1881 (2)	328 (11)
N(31)	3556 (2)	5798 (4)	1187 (2)	251 (7)
	2015 (1)	3919 (1)	2494 (1)	347 (3)
Cl(2)	3164 (1)	1661 (1)	988 (1)	359 (3)
CI(3)	1022 (1)	6876 (1)	1085 (1)	320 (2)
N(11)	691 (2)	2729 (4)	927 (2)	278 (8)
C(12)	-56 (3)	1797 (5)	851 (2)	274 (10)
C(13)	-1007 (4)	595 (7)	738 (3)	368 (13)
H(33)	502 (2)	783 (4)	0 (2)	18 (7)
H(34)	611 (3)	854 (5)	117 (2)	42 (9)
H(35)	550 (3)	743 (5)	233 (2)	46 (10)
H(36)	391 (3)	575 (4)	235 (2)	28 (8)
H(131)	-142 (4)	67 (7)	21 (3)	10 (1)
H(132)	-141 (4)	71 (7)	107 (3)	60 (14)
H(133)	-70 (5)	-47 (7)	81 (3)	8 (1)
H(51)	115 (3)	403 (4)	-99 (2)	18 (7)
H(11)	130 (3)	520 (5)	-240 (2)	46 (10)
H(12)	248 (5)	525 (8)	-250 (3)	8 (2)
H(13)	188 (4)	688 (7)	-231 (3)	57 (14)

 $B_{ea} = 8\pi^2/3$ trace U.

 θ -angle limit of these reflections was 12°. Data were collected within $2 < \theta < 22^{\circ}$ (using the ω -scan method) and have been corrected for Lorentz and polarization effects. Corrections for absorption were not applied. The range for h was -12 to 12, for k 0 to 7 and for l-17 to 17. The intensity variation of the standard reflections was 17%. The number of reflections was reduced by selecting those for which $I > 2\sigma(I)$. The principal computer programs used in the crystallographic calculations were written or modified by Mrs E. Rutten-Keulemans and Dr R. A. G. de Graaff. Of the 3923 reflections measured, 1964 were independent, of which 1337 were observed $[I > 2\sigma(I)]$ and were used in the refinement; $R_{int} = 0.03$. The structure was solved by standard Patterson techniques and refined using full-matrix least-squares refinements based on F with weights $w = [\sigma^2(F_n)]^{-1}$. The non-hydrogen atoms were refined anisotropically. All H atoms were located in successive difference Fourier maps and were refined with isotropic thermal parameters. The final Fourier synthesis had a minimum value of -0.27 and a maximum value of 0.23 e Å-3 at a noise level of 0.10 e Å⁻³. Scattering factors were taken from International Tables for X-ray Crystallography (1974); shift-to-e.s.d. ratio in final cycle <0.1. Final R = 0.018, wR = 0.019.

Discussion. Atomic fractional coordinates and equivalent isotropic thermal parameters for the non-hydrogen atoms are given in Table 1.* Fig. 2 shows a projection of the molecule together with the atomic numbering scheme. Relevant bond distances and bond angles are listed in Table 2. As can be seen from Fig. 2 the coordination mode of the planar ligand 1 Mepyrtr is *via* N(4) and N(1'). This is in agreement with the

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44359 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. The molecular structure of *mer*-Ru(1Mepyrtr)(CH₃CN)Cl₃. Thermal ellipsoids are shown at 50% probability.

Table 2. Bond distances (Å) and bond angles (°)

Ru(1)-N(4)	2.053 (3)	C(34)-C(35)	1.359 (6)
Ru(1)-N(31)	2.073 (3)	C(35)-C(36)	1.367 (5)
Ru(1) - Cl(1)	2.343 (1)	C(36) - N(31)	1.345 (4)
Ru(1) - Cl(2)	2.330 (1)	N(11) - C(12)	1.130 (4)
Ru(1) - Cl(3)	2.345 (1)	C(12) - C(13)	1.446 (6)
Ru(1) - N(11)	2.034 (3)	C(5) - H(51)	0.879 (3)
C(5)-N(4)	1.321 (4)	C(51) - H(11)	0.97 (4)
C(5) - N(1)	1.315 (5)	C(51) - H(12)	0.81 (5)
N(4) - C(3)	1.362 (4)	C(51)–H(13)	0.86 (5)
C(3) - N(2)	1.305 (4)	C(33)-H(33)	0.84(3)
C(3)-C(32)	1.455 (5)	C(34)-H(34)	0.91 (4)
N(2)–N(1)	1.367 (4)	C(35)-H(35)	0.84 (4)
N(1)-C(51)	1.462 (5)	C(36)-H(36)	0.92 (3)
C(32)–C(33)	1.363 (5)	C(13)–H(131)	0.97 (5)
C(32)-N(31)	1.356 (4)	C(13)–H(132)	0.76 (5)
C(33)–C(34)	1.380 (5)	C(13)-H(133)	0.88 (5)
NI(4) D(1) NI(2	1) 70.0(1)		102 2 (2)
N(4) - Ku(1) - N(3) N(4) - Ru(1) - N(1)	1) 78.8(1) 1) 98.2(1)	C(3) = NA(2) = N(1)	102.3(3)
N(4) - Ru(1) - N(1)	1) 90.3(1) 1) 97.61(0)	N(2) = C(3) = N(4)	114.0(3)
N(11) - Ku(1) - CI(N(21) - Du(1) - CI($\frac{1}{1} \frac{87.01(8)}{1} \frac{87.01(8)}$	N(4) = C(3) = C(32)	1 117.9 (3)
N(31) - Ku(1) - CI(1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) = N(4) = C(3)	103.6 (2)
V(1) - Ku(1) - C(2)	(3) (3) (3) (3) (3) (3)	N(4) = C(3) = N(1)	109.4 (4)
N(4) - Ku(1) - Cl(2)	(8) - (8)	C(32) = N(31) = C(32)	(30) 11/.4 (3)
N(11) - Ru(1) - Cl(N(21) - Ru(1) - Cl(2) 00.39(9)	C(22) = C(32) = C(32)	$(3) 122 \cdot 7 (3)$
R(31) = Ru(1) = CI(1)	2) 90.76(0)	C(32) = C(33) = C(3)	(4)
$N(4) = P_{11}(1) - C(3)$	91.00(3)	C(33) = C(34) = C(34) = C(34)	(4)
N(4) - Ru(1) - Cl(3)	3) 0103(0)	C(34) = C(35) = C(35)	(4)
N(31) = Ru(1) = Cl(2) 90.50(9)	$P_{\rm H}(1) = N(11) = C(10) - N(11)$	(4)
N(2) = N(1) - C(1)	31 07.39(0)	N(11) = N(11) = C(1)	12) $170.0(3)$
$\Gamma(2) = IN(1) = C(31)$ $\Gamma(5) = N(1) = N(2)$	110.6 (3)	H(11) - C(12) - C(1)	13) 178.8 (4)
C(0) = IN(1) = IN(2)	110.0 (3)		

interpretation of the NMR spectra of related ruthenium(II) compounds containing this ligand (Hage, Haasnoot, Reedijk & Vos, 1986). The Ru^{III}-N(1') distance of 2.073 Å is slightly longer than the metalnitrogen bonds observed in $[Ru(bpy)_2Cl_2]^+$ (average 2.05 Å). This might originate from the presence of acetonitrile *trans* to the pyridine group. The Ru-N(11) distance of 2.034 Å is the shortest metal-ligand bond in the molecule.

The octahedral geometry is not regular, because of the bite angle of the ligand (78.8°). Interestingly, this angle is the same as that observed for bpy in $[Ru(bpy)_2Cl_2]^+$ (Eggleston, Goldsby, Hogson & Meyer, 1985). The Cl atoms constitute a mutual meridional arrangement around the central Ru atom. The Ru^{III}-Cl bond lengths of 2.330, 2.343 and 2.345 Å are up to 0.024 Å longer than the Ru-Cl distances in the structure of $[Ru(bpy)_2Cl_2]Cl.H_2O$ (Eggleston, Goldsby, Hogson & Meyer, 1985), approximately equal to the Ru-Cl distance in $[Ru(NH_3)_5 Cl]Cl_2$ (Prout & Powell. 1962) and 0.01-0.04 Å shorter than the Ru-Cl distances in the structure of $[RuCl_3(NO){P(C_6H_5)_3}_2]$ (Haymore & Ibers, 1975).

The differences in the Ru–Cl distances for the various ruthenium compounds can be attributed to bipyridine and especially NO⁺ and PPh₃ having stronger π -acceptor properties than 1Mepyrtr. Acetonitrile, which has rather strong σ -donor properties, is also expected to influence the Ru–Cl distances.

A projection of the unit cell is given in Fig. 3. No stacking between the molecules is observed. The shortest intermolecular distance found in this structure

Fig. 3. Projection of the unit cell of *mer*-Ru(1mepyrtr)(CH₃-CN)Cl₃.

is between H(35) and H(36) and is 2.62 Å. Also, a number of short chlorine-hydrogen distances in the range 2.67-3.16 Å are observed in this structure.

References

- EGGLESTON, D. S., GOLDSBY, K. A., HOGSON, D. J. & MEYER, T. J. (1985). J. Am. Chem. Soc. 24, 4573–4580.
- HAGE, R., HAASNOOT, J. G., REEDIJK, R. & VOS, J. G. (1986). Inorg. Chim. Acta, 118, 73-76.
- HAYMORE, B. L. & IBERS, J. A. (1975). Inorg. Chem. 14, 3060-3070.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

KALYANASANDARAM, K. (1982). Coord. Chem. Rev. 46, 159-244.

- PROUT, C. K. & POWELL, H. M. (1962). J. Chem. Soc. pp. 137-140.
- SEDDON, K. P. (1982). Coord. Chem. Rev. 41, 79-157.

Acta Cryst. (1988). C44, 58-61

Structure of 4,4,6,6-Tetrachloro-2-[ferrocenyl(hydroxy)methyl]-2-isopropyl-1,3,5, $2\lambda^5$, $4\lambda^5$, $6\lambda^5$ -triazatriphosphorine

By A. Meetsma

Department of Chemistry, University of Groningen, Nijenborgh 16,9747 AG Groningen, The Netherlands

AND P. L. BUWALDA AND J. C. VAN DE GRAMPEL*

Department of Inorganic Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

(Received 12 May 1987; accepted 15 September 1987)

Abstract. $C_{14}H_{18}Cl_4FeN_3OP_3$, $M_r = 534.9$, monoclinic, I2/a, a = 21.72 (1), b = 8.581 (1), c = 23.377 (4) Å, $\beta = 101.68$ (3)°, V = 4267 (2) Å³, Z = 8, $D_x = 1.665 \text{ g cm}^{-3}$, Mo $K\bar{\alpha}$, $\lambda = 0.71073 \text{ Å}$, $\mu = 14.4 \text{ cm}^{-1}$, F(000) = 2160, T = 130 K, R = 0.029 for3759 observed reflections with $I > 2.5\sigma(I)$. The N₃P₃ six-membered ring has an envelope conformation. The ferrocenyl group is attached to the isopropyl-substituted

* Author to whom correspondence should be addressed.

0108-2701/88/010058-04\$03.00

© 1988 International Union of Crystallography